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Abstract. Precision experiments, such as those performed at LEP and SLC, offer us an excellent oppor-
tunity to constrain extended gauge model parameters. To this end, it is often assumed that in order to
obtain more reliable estimates, one should include the sizable one-loop standard model (SM) corrections,
which modify the Z0 couplings as well as other observables. This conviction is based on the belief that the
higher order contributions from the “extension sector” will be numerically small. However, the structure
of higher order corrections can be quite different when comparing the SM with its extension; thus one
should avoid assumptions which do not take account of such facts. This is the case for all models with
ρtree ≡ M2

W /(M2
Z cos2 ΘW) 6= 1. As an example, both the manifest left–right symmetric model and the

SU(2)L ⊗ U(1)Y ⊗ Ũ(1) model, with an additional Z′ boson, are discussed, and special attention to the
top contribution to ∆ρ is given. We conclude that the only sensible way to confront a model with the ex-
perimental data is to renormalize it self-consistently. If this is not done, parameters which depend strongly
on quantum effects should be left free in fits, though essential physics is lost in this way. We should note
that the arguments given here allow us to state that at the level of loop corrections (indirect effects) there
is nothing like a “model-independent global analysis” of the data.

1 Introduction

It is a remarkable fact, that precise theoretical predic-
tions of the electroweak SM, obtained after taking into
account one-, two-, or even in some cases three-loop ef-
fects, fully agree with all experimental data which have
been accumulated so far and which have reached a sur-
prisingly high level of precision [1]. Moreover, these theo-
retical calculations have a high indirect predictive power
because of the substantial sensitivity to non-decoupling
heavy particle effects. A potentially large top quark con-
tribution to boson self-energies has been recognized a long
time ago [2]. Based on this, the top mass has been esti-
mated quite accurately (mind

t = 170(184) ± 7 GeV, as-
suming MH = MZ(300 GeV)) [3] prior to its direct de-
termination (mdir

t = 173.8 ± 5.2 GeV) which confirmed
the indirect result not so long ago [4]. Now, with the top
quark at hand, the only not yet discovered particle which
is required in the SM, the Higgs boson, can be studied.
At present, the indirect bound after inclusion of the rele-
vant higher order corrections to the Z0 peak observables
implies mH < 262 GeV at 95% C.L. [5].

It could be that better and better agreement between
SM theory and experiments will follow the increasing so-
phistication of perturbative calculations. In the framework
of the SM, this is a natural and obvious possibility.

In the following, let us focus on a different scenario.
There are many arguments against the SM to herald in the
ultimate theory of elementary particles. We believe that,
beyond the SM regime, at higher energies, new physics
will show up. Precision experiments provide us an impor-
tant tool to find its remnants already at present energies.
They have been analyzed in the context of many different
models, e.g, those which include an additional Z ′ boson.
For details we refer to [6]. It is customary to assume that
extended models can be constrained in particular by the
neutral current (NC) data, through their modified tree
level Z0 couplings and improved by radiative corrections
from the SM. Contributions from the heavy non-standard
sector seem to be negligible in a first approximation. How-
ever, the situation in general is more complicated and this
“standard” approach can be misleading. Before going fur-
ther we should make this point clearer. In GUT models,
typically, per construction a gauge hierarchy exists [7]:
a Higgs field exhibits a small vacuum expectation value
(VEV) v and determines the SM particle mass spectrum,
and another Higgs field with a large VEV V generates
the superheavy sector. Decoupling theory states [8] that
once a proper identification of the light and of the heavy
particles at tree level is done, then such a division will
be maintained in any order of perturbative calculations
(all the superheavy particle effects enter at most as loga-
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rithmic corrections to the light particle effects). However,
in phenomenological applications we have no direct ex-
perimental access to the parameters of the heavy sector
(V, MHi

, · · ·) but only to some effective low energy pa-
rameters, like for instance the ρ parameter, which is also
a function of the parameters of the heavy sector. If we con-
strain the low energy effective parameter by experiment
(in some physical on-shell renormalization scheme) then
we in general set up boundary conditions which are not
compatible with the set-up of a gauge hierarchy and the
decoupling theory just mentioned does not work. This has
further consequences. After letting the superheavy masses
go to infinity, the low energy effective theory (assuming
light fields are the same as in the SM) is not any longer
renormalizable, much in the same way as the low energy
effective four fermion interactions are non-renormalizable
if we fix Gµ and let MW → ∞ (which requires g → ∞
simultaneously).

2 Discussion

To outline our point of view let us consider left (L)–right
(R) symmetric models (LRM) with gauge group SU(2)L⊗
SU(2)R ⊗ U(1)B−L which are manifestly LR symmetric
before the symmetry is broken by the appropriate Higgs
mechanism [9]. These models have all the necessary fea-
tures of a large class of extended models, and some re-
sults at the one-loop level have lately been obtained [10,
11] which are applicable to LEP/SLC physics.

Let us start by considering the Z0 partial decay widths
and forward–backward asymmetries, theoretically
described by the following relations [12]:

Γff̄ =
Nf

c GFM3
Z

6π
√

2
β

×
(

3 − β2

2
v2

f + β2a2
f

)
KQCDKQED, (1)

Af
FB =

3
4
AeAf , Af =

2vfaf(
v2

f + a2
f

) , (2)

where Nf
c is the color factor, β the fermion velocity, the K

factors take into account electromagnetic and strong cor-
rections, and vf and af are vector and axial fermion cou-
plings. In the LRM model these can be written in the sim-
ple and compact form (T 3

f , Qf being the fermion isospin
and charge, respectively)

vf =
√

ρf
eff(T 3

f − 2Qf sin2 Θf
eff)

× (cos φ − sin φ/
√

cos 2ΘW), (3)

af =
√

ρf
effT 3

f (cos φ + sin φ
√

cos 2ΘW). (4)

Here φ is the Z0–Z ′ mixing angle and the two other an-
gles are connected to the effective weak mixing parameter
sin2 Θf

eff in the NC at the Z0 resonance (for which (3)

is the defining equation) and the weak mixing angle ΘW
defined via the vector boson masses by

sin2 ΘW = 1 − M2
W

ρ0M2
Z

. (5)

While the ρ parameter is unity at the tree level in the SM,
it differs from unity in many extended models: ρtree ≡
ρ0 6= 1. Let us assume that higher order effects are small,
actually, and that they can be gathered by SM like the
relations

ρ =
ρ0

(1 − ∆ρ)
,

ρf
eff = ρ(1 + ∆ρf

rem). (6)

In the LR model ρ0 should be understood as ρ0/ρ± where
ρ0 is given by ρ0 = 1 + sin2 φ

(
M2

Z2
/M2

Z1
− 1

)
and is due

to the Z–Z ′ mixing and ρ± = 1 + sin2 φ±(M2
W2

/M2
W1

− 1)
is due to the W–W ′ mixing.

In terms of the input parameters α, GF, MZ , · · · with
AZ = (πα(MZ))/((2)1/2GF) and α(MZ) = α/(1 − ∆α)
we can predict

sin2 ΘW =
1
2

[
1 −

√
1 − 4AZ

ρM2
Z

(1 + ∆rrem)

]
, (7)

sin2 Θf
eff =

1
2

[
1 −

√
1 − 4AZ

ρf
effM2

Z

(
1 + ∆rf

rem

)]
, (8)

with leading higher order corrections incorporated in re-
summed form [13]. Let us put φ = 0, so that pure SM
physics is restored. Then the terms ∆α, ∆ρ, ∆ρf

rem, ∆rrem,
∆rf

rem include SM radiative corrections to the Z0 and
muon physics [12]. These depend on many details, for in-
stance, the f superscript means that actually sin2 Θf

eff and
ρf
eff are not universal quantities but are different for each

fermion flavor produced at the Z0 resonance through fla-
vor specific vertex (and box) effects. The flavor depen-
dence, however, is relatively small except for f = b which
requires a separate treatment. Referring to lepton univer-
sality, we denote the leptonic weak mixing parameter by
sin2 Θ`

eff (` = e, µ or τ). Some of the radiative corrections
are dominant. For instance, in (7) the two leading effects
have been incorporated by including the running of the
fine structure constant (shift by ∆α) from low to high (Z
mass) energies and the renormalization of ρ0 = 1 by the
large mass splitting between top and bottom quarks in
boson self-energies (shift by ∆ρ):

∆ρ = ∆ρtop + ∆ρrem, ∆ρtop = 3xt, xt ≡
√

2GF

16π2 m2
t .

(9)
For f 6= b, all other contributions indexed by “rem” are
smaller remainder terms, e.g., ∆rf

rem is the remainder gath-
ering non-leading effects from boson self-energies, vertices
and boxes. In the case f = b there is a leading top mass
correction coming from the Zbb̄ vertex [14] which can be
incorporated as
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ρb
eff = ρ`

eff(1 + τb)2, (10)

sin2 Θb
eff = sin2 Θ`

eff/(1 + τb), (11)

with τb = −2xt (see (9)). All correction factors influence
Γff̄ , Af

FB given in (1) and (2), as well as other observables.
Now, let us switch on “new physics” again (φ 6= 0).

The question is (apart from coupling modifications) what
is going to change in the loop effects. As written in the
Introduction, the “canonical” answer is [15] (here we refer
only to papers where LRM have been considered): (6)–(9)
will not be changed, except for negligible contributions
affecting the sub-leading terms. The leading behavior will
be governed by the SM.

However, beyond the tree level, as shown in [11], a sub-
stantial part of the relevant radiative corrections change
completely, and there is only a weak relationship between
the radiative corrections of the SM and the new physics
model (NPM = extended SM). While corrections like ∆α
are universal, others may change dramatically, in particu-
lar the non-decoupling heavy particle effects. For instance,
one of the most important one-loop terms, ∆ρtop loses its
m2

t dependence, namely, in the LR model we obtain

∆ρtop
LR =

√
2GF

8π2 c2
W

(
c2
W

s2
W

− 1
)

M2
W1

M2
W2

− M2
W1

3m2
t (12)

as a leading term. For a W2 boson mass of the order of 400
GeV or larger this contribution is much smaller than the
SM one, actually even smaller than the SM logarithmic
terms. Besides this, other particles like heavy neutrinos
and heavy scalars [10,11] influence substantially the sub-
leading terms in (6)–(9).

The traditional philosophy simply breaks down. When
fitting parameters within the framework of a NPM, e.g.
the Z0–Z ′ mixing parameter φ, the only way of including
one-loop effects is to renormalize the whole model. Ex-
cept from universal corrections like the QED shift ∆α,
it is not legitimate to use radiative corrections from the
SM for its extension unless ρ0 remains unity. Affected are
in particular the zero momentum gauge boson contribu-
tions. Although at low energies and at tree level the LRM
seems to be effectively equivalent to the SM (φ, φ± → 0
and MZ2 , MW2 → ∞), radiative corrections can be quite
different and do not follow this naive expectation (see (12)
and MW2 → ∞)1.

The crucial point is that associated with the additional
free parameters there are new divergences and hence new
subtractions needed. Then (6)–(9) will get additional con-
tributions and now will be functions of the extended set of
input parameters (SM parameters plus φ, MW2 , MZ2 , · · ·).
Let us note that the naively written one-loop level defini-
tion of sin2 Θf

eff in (8) should also be different from its SM
structure. The LRM angle φ can be fixed at tree level by
[F (ΘW) = − cos2 ΘW/(cos 2ΘW)1/2]

1 As discussed at the end of the Introduction we should be
careful in referring to decoupling in the limit MW2 → ∞. In
reality we fix ∆ρtop

LR to experimental data, which means also
that a limit MW2 → ∞ not necessarily is allowed any longer.

sin 2φ =

[(
g2 + g′2) (

M2
W2

+ M2
W1

) − 1
2g2

(
M2

Z1
+ M2

Z2

)]
F (ΘW)

(
M2

Z2
− M2

Z1

) ( 1
2g2 + g′2) ,

(13)
and extraction of sin2 Θf

eff from the Z fermion couplings
(3) at the one-loop level will also include its renormaliza-
tion. The same touches on the sin2 ΘW definition (5) and
(7), where ρtree 6= 1 (see [11] for the renormalization of
the sin2 ΘW parameter).

The observation that the structure of higher order ef-
fects is highly model dependent was pointed out long time
ago in [16] for the case of models with an enhanced Higgs
sector (the so-called “unconstrained” extended models)
for which the custodial symmetry exhibited by the SM
Higgs is violated at the tree level, causing ρtree 6= 1. In [17]
it was shown in general how the SM radiative corrections
are modified in models which require a direct or indirect
renormalization of the ρ parameter. See [18] for an analysis
of precision observables in a SM enhanced by an additional
Higgs triplet. In any case, if ρ is itself a free parameter or
a function of other input parameters, the quadratic top
mass contributions coming from self-energy diagrams are
lost by the required subtraction and only logarithmic top
mass dependences remain. The dependence on the Higgs
mass is also affected substantially (see the Appendix for
details). Hence, in models with ρtree 6= 1 the LEP/SLC in-
direct top mass limits become obsolete. Such models are
unable to explain why the direct top mass agrees with
the one obtained from precision measurements of the loop
effects in ∆ρ. The coincidence mind

t ' mdir
t obtained by

SM fits has meaning only when ρ is a finite calculable
quantity, which requires ρtree = 1, like in the SM or in
its minimal supersymmetric extension. In the case of the
LRM, which we have discussed before, the phenomenon
of a complete change in the large mt behavior of (12) was
obtained in a different renormalization scheme which did
not treat ρtree itself as an independent parameter. In con-
trast to the m2

t dependence originating in the W and Z
self-energies at zero momentum, the m2

t dependence of
the Zbb̄ vertex is not (or little) affected when going to
an extended model. Therefore, the observables including
b quark contributions, like Γbb̄, Ab

FB, the Z width or the
Z peak cross-section, still exhibit strong mt dependences
(now very different from the ones in the SM) which al-
low one to get good indirect mt bounds [18,19]. However,
there is no good reason why the new bounds should coin-
cide with the ones obtained in the SM. This does not nec-
essarily mean that one cannot obtain equally good global
fits, because in the extended model more free parameters
are at our disposal (ρ0 free fits [19]).

The mentioned “instability of quantum effects” may
also be observed in rather simple modifications of the SM,
like, the SU(2)L ⊗U(1)Y ⊗ Ũ(1) models, which often arise
as the low energy limit of interesting GUT’s, and which
exhibit an additional Z ′ boson mixing with the Z0. We
may restrict ourselves to consider the constrained version,
where Higgs bosons transform as doublets or singlets of
SU(2)L. Aspects of the renormalization of such models
have been considered in [20].
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If Z ′ mixes with Z0 then we obtain neutral vector
bosons of masses MZ1(≤ MZ0) and MZ2(≥ MZ0) and at
the tree level the Z1–Z2 mixing angle φ is fixed by

tan2 φ =
M2

W / cos2 ΘW − M2
Z1

M2
Z2

− M2
W / cos2 ΘW

, (14)

or, equivalently,

ρtree ≡ ρ0 ≡ M2
W

M2
Z1

cos2 ΘW
= 1 + sin2 φ

(
M2

Z2

M2
Z1

− 1
)

> 1.

(15)
In [20] sin2 ΘW has been calculated in terms of α, GF and
MW at one-loop order,

sin2 ΘW =
πα√

2GFM2
W

(1 + ∆r̃), (16)

with the conclusion that ∆r̃ ' ∆rSM up to negligible cor-
rections, in a scheme where continuity in the limit φ → 0
is imposed by hand. Note that this relation, which de-
rives from the charged current (CC) muon decay, is not
modified at the tree level. Thus sin2 ΘW ' sin2 ΘSM

W when
calculated in terms of α, Gµ, MW and the subtraction is
imposed at φ = 0.

However, if we calculate sin2 ΘW in terms of α, GF and
MZ (the standard input parameters for precision calcula-
tions), again at one-loop order, we have

sin2 ΘW cos2 ΘW =
πα√

2GFρ0M2
Z

(1 + ∆r̃), (17)

which is modified by the appearance of the new parameter
ρ0, which has to be renormalized now as well. Since ρ0
acts as a free parameter we cannot any longer get the mt

bounds of the SM. In the commonly accepted procedure
one would argue as follows: in a linear approximation, due
to ρ0 = 1 + ∆ρ0 6= 1 we effectively get an extra classical
contribution

δ∆r = −cos2 Θ0
W

sin2 Θ0
W

∆ρ0, ∆ρ0 = sin2 φ

(
M2

Z2

M2
Z1

− 1
)

, (18)

where

sin2 Θ0
W = 1 − M2

W

M2
Z

. (19)

Thus it looks as if we would substitute in (6)

∆ρtop → ∆ρtop + ∆ρ0, (20)

with both contributions positive. Formally, one seems to
be able to constrain both mt and ρ0. After a full one-loop
renormalization of the NPM a term ∆ρtop ∼ m2

t is absent,
however, and the conventional recipe breaks down (see the
Appendix for details).

We conclude that self-consistent constraints on the
NPM parameters can be obtained only by a consequent
order by order analysis of the model.

The question remains: what can we say about con-
straints on the additional parameters of the NPM without
knowledge of the higher order corrections? As mentioned
earlier, parameters which receive substantial model-
dependent contributions from radiative corrections have
to be treated as free parameters now, with the conse-
quence that important information obtained from SM fits
gets lost, e.g. the top mass prediction.

Let us take the LEP/SLC data [3]

MZ = 91.1867 ± 0.0021 GeV,

ΓZ = 2.4939 ± 0.0024 GeV,

σ0
h = 41.491 ± 0.058 nb,

R` = 20.765 ± 0.026,

A0,`
FB = 0.01683 ± 0.00096.

They have been extracted from the line-shape and lepton
asymmetries. We will also use A`, R0

b , R0
c , A0,b

FB , A0,c
FB , Ab,

Ac (values, correlation matrices and definitions are to be
found in [3]). The important point is that all of them are
expressible through (1)–(4).

According to our approach sin2 Θf
eff and ρf

eff should be
left as free parameters 2. Then sin2 ΘW is given by (5)
with ρ0 = ρf

eff (we consistently use tree level relations).
We know that physics connected to the b quark differ from
those of other fermions. We take for sin2 Θb

eff relation (11)
but leave ρb

eff as a free parameter. Later we will use relation
(10) to get a bound on mt via the Zbb vertex which yields
a main source of information on the top mass in fits with
free sin2 Θ`

eff .
To sum up, we have 18 physical data (MZ , ΓZ , σ0

h, R`,
A0,`

FB , A`, R0
b , R0

c , A0,b
FB , A0,c

FB , Ab, Ac, sin2 Θ`
eff , sin2 Θb

eff ,
sin2 ΘW, mt, αs, MW ) parametrized through vf and af

((3) and (4)). The latter are functions themselves of the
four completely free parameters ρ`

eff , ρb
eff ,φ, sin2 Θ`

eff and
useful constraints are obtained only because af and vf

differ for various fermion flavors.
The χ2 minimization procedure gives [21] (at 90 %

C.L.)

|φ| ≤ 0.003, (21)

ρ`
eff = 1.005 ± 0.004, (22)

ρb
eff = 0.998 ± 0.009, (23)

and

sin2 Θ`
eff = 0.232 ± 0.001. (24)

If we assume, as already discussed, that the Zbb̄ vertex is
not affected too much by the new physics then the rela-
tions given in (10) and (11) hold and an upper limit on the

2 Note that sin2 Θ`
eff(QFB) extracted from hadronic charge

asymmetry < QFB > by the LEP Collaborations (see [3] and
references therein) relies in an essential way on the SM. In
contrast to common practice we do not use this observable in
a derivation of NPM constraints. This fact is often ignored in
analyses.
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top mass can be derived. We get within the given errors
from (22) and (23)

ρb
eff

ρe
eff

= (1 + τb)2 ≥ 0.98, (25)

from which mt ≤ 225 GeV follows. See also the discussion
in [19].

In the framework of the LR model, for MZ2 >> MZ1

we may use the approximate relation [22]

φ '
√

2 cos ΘW
M2

Z1

M2
Z2

(26)

in order to obtain the Z2 mass bound

MZ2 ≥ 1420GeV. (27)

This is a quite strong constraint 3 (see [25] for a com-
prehensive analysis including also the low energy data).
However, we should stress here that treating sin2 ΘW and
sin2 Θf

eff as “black boxes” we lost essential physical infor-
mation on the NPM. In reality, at loop level, sin2 ΘW and
sin2 Θf

eff are complicated functions of new parameters e.g.
φ, MZ2 , MW2 , heavy neutrinos, extra Higgs particles. We
do not know what the relation is between the result ob-
tained in (21)–(24) and those which would come from the
full one-loop analysis.

3 Conclusions

To summarize, fitting precision data requires precise pre-
dictions (including the relevant higher order effects) to
be confronted with the data, i.e., for conclusive compar-
isons the precision of data and theory have to match as
far as possible. For example, fitting the electroweak data
with SM tree level predictions only would rule out the
SM, while including radiative corrections leads to perfect
agreement. These rules apply as well for any extension of
the SM. Such NPM exhibit additional free parameters, so
that parameters of the SM, which may be substantially
shifted by higher order SM corrections, turn into free pa-
rameters in the NPM. It is thus obvious that taking into
account just the SM radiative corrections plus the tree
level extension cannot make sense in general. This is the
case in particular for all ρtree 6= 1 extensions. In our opin-
ion, there are much more model dependences of global
fits and their interpretation than usually presumed. As an

3 Our analysis should be taken as an illustration only. Our
approach is not fully self-consistent. Some of the Z0 param-
eters used here are so-called pseudo-observables, which have
been extracted from experimental data utilizing SM radiative
corrections [23]. We could in principle extract the Z0 parame-
ters from experimental data using the ZFITTER program [24]
leaving, according to our approach, model-dependent radiative
corrections as free numbers and see precisely the difference in
the fits. Also γ–Z interference should be taken into account in
an appropriate manner.

example, the S, T , U parameter description of physics be-
yond the SM [26,27] directly only applies to ρ = 1 exten-
sions, like models with additional fermion families (already
discussed in [2]), additional scalar singlets and doublets,
massive neutrinos which might exhibit ν mixing and su-
persymmetric extensions of the SM. For ρ 6= 1 extensions
our discussion concerning ∆ρ and the mt bounds applies
directly to T which is defined as ∆ρ/α. S and U are scale
sensitive quantities which are expected to survive modifica-
tions in the renormalization procedure. The problem here
is that the gauge boson self-energies which are intended
to be described by these parameters are not observables
themselves. They cannot be separated in general from ver-
tex and box corrections. See also the discussion within the
effective Lagrangian approach [28] for this point. One of
the most important results of the electroweak precision
measurements is the fact that ρ is very close to its SM
prediction. All models with ρ0 6= 1 have a severe fine tun-
ing problem: why does the value of the “ρ0 free” fits yield
a result which by accident is very close to the SM predic-
tion?
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Appendix: Modification of the SM top quark
and Higgs boson contributions
in extensions of the SM with ρ 6= 1

One of the crucial features of the SM is the validity of the
relationship

ρ =
GNC

GCC
=

M2
W

M2
Z cos2 Θ0

W
= 1,

cos2 Θ0
W =

g2

g2 + g′2 , (28)

at the tree level. As discussed in the main text, many
extensions of the minimal SM share this property with
the SM. For all these models

GNC

GCC
(0) = ρ =

1
1 − ∆ρ

(29)

is a calculable quantity which is sensitive to weak hyper-
charge breaking and weak isospin breaking due to mass
splittings of multiplets. Here we mention that if ρ0 =
ρtree 6= 1 one should consequently replace

sin2 Θ0
W → sin2 ΘW = (e/g)2 = 1 − M2

W

ρ0M2
Z

, (30)

∆r → ∆rg = 1 − πα√
2GµM2

W

1
sin2 ΘW

,
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in all SM formulae. If we define ∆ρ0 in analogy to (29) by

ρ0 =
1

1 − ∆ρ0
,

we have

sin2 ΘW = sin2 Θ0
W

(
1 +

cos2 Θ0
W

sin2 Θ0
W

∆ρ0

)
,

and hence the exact relation

1
1 − ∆r

=
1

1 − ∆rg

(
1 +

cos2 Θ0
W

sin2 Θ0
W

∆ρ0

)
(31)

holds. The experimental bounds mentioned before suggest
that deviations from ρ0 = 1 can be treated as perturba-
tions. In the standard approach such “tree level” pertur-
bations may be included by using

(∆ρ)irr → (∆ρ)irr + (1 − ρ−1
0 ), (32)

or, in linear approximation, simply by adding

δ∆r = −cos2 Θ0
W

sin2 Θ0
W

∆ρ0, (33)

where ∆ρ0 depends on the extension considered. This ap-
proach is wrong, however. In the following we show which
of the SM contributions survive once ρ0 is subject to renor-
malization.

Consider the low energy effective neutral current
“Fermi constant”

√
2GNC =

πα

M2
Z cos2 Θ`

eff sin2 Θ`
eff

(1 + δNC) . (34)

Since it is an independent parameter here and hence ap-
pears subtracted independently of GCC = Gµ, no term ∆ρ
is left over and we have4 (s2

W = 1 − c2
W , c2

W = M2
W /M2

Z)

δNC = ∆α − 1
c2
W

∆1 + δvertex+box
NC

. (35)

For the leading heavy particle effects we obtain

δtop
NC

= −K
2

3c2
W

ln
m2

t

M2
Z

,

δHiggs
NC

= −K
1

3c2
W

(
ln

m2
H

M2
Z

− 5
3

)
, (36)

where K = α/(4πs2
W ). For the charged current amplitude

we have
√

2Gµ =
πα

M2
W sin2 Θ`

eff
(1 + δCC) , (37)

where α and MW are renormalized as usual and sin2 Θ`
eff

as in the NC case. With Gµ fixed from the µ decay rate
we have

δCC = ∆α − ∆1 + ∆2 + δvertex+box
CC . (38)

4 In the notation of [27] ∆ρ = ε1, ∆1 = ε3 and ∆2 = ε2,
which up to normalization correspond to T , S and U [26].

The leading heavy particle effects in this case are

δtop
CC = K

4
3

ln
m2

t

M2
W

,

δHiggs
CC = K

1
3

(
ln

m2
H

M2
W

− 5
3

)
. (39)

For the ratio we find

ρ =
GNC

Gµ
=

M2
W

M2
Z sin2 Θ`

eff
(1 − ∆ρ̂′) , (40)

where ∆ρ̂′ = δCC − δNC . Here the leading heavy particle
terms read

∆ρ̂
′top = K

(
4
3

+
2

3c2
W

)
ln

m2
t

M2
W

,

∆ρ̂
′Higgs = −K

1
3

s2
W

c2
W

(
ln

m2
H

M2
W

− 5
3

)
. (41)

Obviously no terms proportional to m2
t (which originate

in the SM from the W and Z self-energies at zero momen-
tum) have survived and the leading heavy Higgs terms are
reduced by roughly a factor 10 (!) relative to the minimal
SM. In contrast, the m2

t terms showing up for the Zbb̄ ver-
tex and the observables which depend on it are at most
weakly affected due to mixing effects.
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